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PERFORMANCE OF A RANGE-AMBIGUOUS MTI
AND DOPPLER FILTER SYSTEM

INTRODUCTION

In a radar system, in order to reject clutter noise, a sequence of pulses is often re-
quired. A proper filter can then be formed which rejects the stationary clutter and
passes through the nonstationary targets. The performance of such a clutter-rejection
filter depends on the sampling time (or the interpulse time). Often the radar system is
required to measure the target doppler frequency. The resolution with which the doppler
frequency can be measured is also determined by the sampling time (or the interpulse
time). In either case, the faster the sampling rate, the better the performance possible.

However the radar unambiguous range is determined by the interpulse time. At a
higher sampling rate some far-range intervals fold over and the target range becomes
ambiguous. Furthermore clutter at faraway range cells folds over on the near-in range
cells. Thus the clutter level at a certain range cell is actually increased. Moreover a far-
away target has to compete with the near-in clutter; thus a range-ambiguous system re-
quires a higher clutter-rejection capability to achieve the same performance it would have
if it were a range-unambiguous system. In this report the performance of such a radar
system is analyzed and some typical examples are presented.

CORRELATION FUNCTION

A radar transmits a series of identical pulses with an interpulse time of T. The un-
ambiguous range of this radar is

Tc
'O = 2 '(1)

where c is the velocity of light. Assume that the radar detection range ra is many times
larger than ro. For convenience it is assumed that the radar echoes from targets or clutter
at ranges greater than r. are so small that they are negligible. Let N be an integer num-
ber (called the foldover index) such that

N = r. /rO. (2)

The received radar signal is range gated. In what follows we shall limit ourselves to
examine only the signal at a certain range bin. The kth received pulse at a range r
(which immediately follows the kth transmitted pulse) is the sum of the return of the kth
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transmitted pulse at range r, the (k - 1)th pulse at range r + ro, the (k - 2)th pulse at
range r + 2ro, etc. Hence

k-i
Sk(r) = Pk_i(r + iro). (3)

i=O

The correlation of two returns at times Tk and T7 (where Tk = kT) is

k-i k-i
R(Tk, TQ, r) = LEL Pk_i(r + iro)PQ j(r + jro). (4)

i=0 j=0

Because the radar returns from two range cells are statistically independent, one has

Pk-ipQ-j = 0, if i~ /zj.

Hence the double summation of Eq. (4) becomes

k-1
R(Tk, TQ, r) = L Pki(r + irO)PQ_(r + irO). (5)

i=o

Three cases are of interest. Let the radar have a K-pulse canceler (or K-point doppler
filter). The MTI (or doppler-filter) pulses can be labeled as k = 0, 1, ..., K - 1. In the
first case we assume that identical pulses are transmitted continuously. Pulses prior to
the first MTI (or doppler-filter) pulse are the same as the MTI pulses. This can happen
when extra pulses are transmitted prior to the first usable MTI pulses or, in a scanning
radar, when the pulses transmitted are not changed from sweep to sweep. Although the
clutter cell will be slightly different from sweep to sweep due to the rotation of the
antenna beam, this effect is assumed to be negligibly small and is ignored. Under this
condition Eq. (5) holds.

In the second case it is assumed that no pulse is transmitted prior to the first MTI
pulse. This case occurs when the antenna beam of a phased array is steered to a different
direction and no previously radiated energy is available in this direction. The first trans-
mitted pulse in that direction is used as the first MTI pulse. The returns of the first,
second, ..., and (K - 1)th pulses are

S0 =Po (r),

S1 = P1 (r) + Po (r + rO),

....

SK1 = PK_, (r) + PK-2(r + ro) + ... + PO [r + (K - 1)rO], (6)

where S0 , S1 , ... , SK1 are the received pulses and P1(r + jrO) represents the return of the
ith transmitted pulse from a range cell r + jrO.
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An MTI system performs cancellation based on the principle that the stationary
clutter return does not vary from pulse to pulse. Hence a sequence of identical pulses
must be received to achieve cancellation. However, in this case of no pulse transmitted
prior to the MTI pulse, one sees from Eqs. (6) that the received pulses vary from pulse
to pulse; thus their capability of canceling the stationary clutter will be greatly reduced.
One may argue that this variation may be compensated by suitably choosing a set of
filter weights. But this variation depends on whether a range cell contains clutter or not,
and this information is not known a priori.

A doppler-filter system also must receive a sequence of identical pulses to achieve
integration gain. For clutter rejection the receiving pulses are usually weighted to reduce
sidelobes and to improve the clutter rejection. Therefore variation of the received pulses
is again not desirable.

To avoid this problem of variations of the clutter returns, a few extra pulses can be
used until the received pulses are stabilized; that is, the second case can be changed to
the first case.

In the third case it is assumed that the radar is operating in a frequency-agility mode;
that is, the radar pulses transmitted prior to the first of the MTI pulse group are at a
different frequency. The returns can be represented as

SO = PO(r) + P'1 (r + ro) + P'2 (r + 2rO) +

S1 =Pl(r) +Po(r+ro) +P1 (r + 2rO) + (

SK-1 =Pg-_(r) + P-2(r + ro)+ PK3(r +2ro) + ...................... (7)

The returns P'l, P 2 ... are from the previously transmitted pulses, which have a
frequency different from that of the current pulses.

During the receiving time the local oscillator is set at a frequency compatible with
the current pulses, so that the primed pulses from the mixer are noncoherent and un-
correlated from pulse to pulse. They act similar to random noise, if they are not rejected
by the band-limit filter. This type of wind-band noise cannot be filtered out by an MTI
filter. Its presence affects the signal-to-noise ratio and makes detection more difficult.
However it has little effect on the MTI performance. In the subsequent discussion we
shall ignore its presence. If the presence of the primed pulses is ignored, this case
becomes identical to the second case. Conclusions drawn from there can be directly
applied to the present case.

For simplification in the subsequent discussion, we shall assume that the pulses
prior to the first MTI pulses are identical to the MTI pulses.

3
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IMPROVEMENT FACTOR

By use of Van Trees' model [1] the correlation function can be represented

R(Tk, T'9, r) = Y +i Gi(f)ej2"T'T~'-) df', (8)
k Q L~ (r + iro)L f i (8

where Gi(f) is the clutter spectrum density function at the range cell r + iro, Ci is a con-
stant which is a function of radar power, antenna gain, and the clutter radar cross sec-
tion, and L equals 2 for volume clutter and equals 3 for surface clutter. In this formula-
tion all radar pulses are assumed identical.

If a target resides at a range r + mro and has a spectral density function H(f), its
correlation function is

Rt(Th, k, r) t 04fH(f)ej27rfT(k-Q)df 9
Rt(Tk, T, r) =(r + mr0 )4 9

where Ct is a constant which is a function of the pulse power, radar parameters, and
target cross section.

For a range-unambiguous MTI system the clutter correlation function at a range cell
r + mro is

RO(Tk, TV, mro) C.+ JGm, (f)e j7fN~k df, (10)
(r + mro )L(0

where TN = NT. The target correlation function remains the same as that of Eq. (9),
except the interpulse time is TN instead of T.

The signal-to-clutter ratio at the output of the filter is

LEa~a*Rt(T,,, TQ, r)

(SCR), = (11)

aeakR (Tk, TV, r)
k Q

where ak is the filter weight and a* is the conjugate of ak.

For convenience in making comparisons we shall assume that the clutter at the in-
put of the filter is the same as that of a range-unambiguous MTI system. For a worst
case we shall consider a target at the farthest range interval that

rT = r + (N - 1)ro. (12a)
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The input signal-to-clutter ratio is then

(sCR). = i (12b)ir4 |rL (2b 

For convenience assume that the clutter is uniform throughout the entire range interval.
Inserting Eqs. (8) and (9) into Eq. (11), one finds the improvement factor of a range-
ambiguous system is

(SCR)o

(SCR)i

LLaka fH(fl)ei27rfT(k4) df

k ~ , (13a)

a*a fG(f)ej2UfT(h4)df]AL (rO, r, N)

where

N 1 (rlr,) + (N- 1)

iAN L (r/ro)+i J (13b)

For the range-unambiguous case, from Eq. (9) one finds

kaa* fH(f)ei27rfNT~k-k) dl
k Q

u k (14)

a a* fG(f)ei27rfNT(k-Q)df
k Q

Two cases are of interest. In the first case the target spectrum density is assumed
to be an impulse function:

H(f) = 5 (f - ft)-

Under this condition the target is assumed to have a constant doppler frequency ft. Its
correlation function then becomes

fb(f - ft)e "2rT~~) df = ei2rt~-

5
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and the improvement factors for range-ambiguous and range-unambiguous systems are
2

I =a

IT a9
k 

(15)

L E akaQ
k Q

1 =

ELI
h k 

fG(f)ei21'fT(kh-) df AL (rO, r, N)

IL ak 22 

*
2kaQ fG(f)e j27rfNT(k-Q) df

This corresponds to a doppler-filter case.

In the second case of interest H(f) is assumed to be a constant value of unity; then

fH(fl)e j27rfT(k-9) df = 1, k = Q

=0, k=Q.

This corresponds to the case for an MTI in which the target doppler is not known a
priori. One may assume that it has a uniform distribution; therefore

I =a

2

El9 

(17)

Z E aka' fG(f)e j2rfT(k4) df AL (r 0, r, N)
Ok k 

and

EL aQI2

a' fkQG(f)ei2-7rfNT(k-V) df
Ok Q

(18)

One of the most important questions is whether by use of a range-ambiguous MTI
(or doppler filter) the clutter-rejection performance can be improved. This can be easily
answered by comparing the improvement factors of these two types of clutter-rejection
systems. One has

6
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TY LL akaQ fG(f)ei27rfT(kd)'df

Iu B a fG(f)ei27rfNT(k)dfLN (19)

k9
k k

For the case when the MTI pulses are identical to pulses transmitted prior to MTI pulses,
the factor AL(ro, r, N) can be factored out. The above ratio can be examined in two
parts. The first part of this ratio,

ETL aka* fG(fpei27TfT(k-) df
k V

a a5 j fG(f)ei27rfNT(k-Q) dl

k9 
is the ratio of the clutter residues of the range-ambiguous MTI (or doppler filter) system
to that of the range-unambiguous system. This ratio is a function of the correlation
time. It is well known that the minimum (optimum) clutter output of an MTI system is
proportional to the correlation time [2]. As the correlation time increases, the clutter
output also increases. For a range-ambiguous system the correlation time is T, and for a
range-unambiguous system the correlation time is NT. Thus for the same type of clutter
a range-ambiguous system produces less clutter residues and has a better improvement
factor. As the foldover index N increases, the correlation time of a range-ambiguous sys-
tem becomes shorter, and this leads to a better improvement factor.

The second factor, AL(ro, r, N), is a function of the residue range r (Eq. (12a)) and
the foldover index N. When r = ro this factor becomes

N
AL (rO rO, N) 

i=1

Hence one may manipulate AL(r 0 , r, N) into the form

N-1 rrro)N+((NJ- 1)1

AL (r, r, N) =A ( i=O 

This factor can be approximated as

N (N)L (ro) LAL (rO, r,N)
i= 1~r

7
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The factor AL thus consists of two parts; the first part is due to the effect of the foldover
index N, and the second part is due to the residue range r.

As the foldover index N increases, the number of foldover clutter cells increases, and
the amount of clutter in each range cell increases too. Since a target signal is competing
with this clutter level, a better improvement factor is required to achieve the same visibil-
ity. Thus the effect of the foldover index N on the one hand is to reduce the MTI cor-
relation time and to achieve better clutter rejection. The effect of N on the other hand
is to increase the number of foldover clutter cells; hence the amount of clutter which
must be rejected must be increased.

When the residue range r is small, the target signal competes with clutter close to the
radar. The amount of clutter required to be rejected is large. The amount of increased
clutter due to this effect is shown in Fig. 1. The ratio

N-1 F(r/r0 ) + (N - l)1 L N N\L

i~o [o (rir0) + J / | iE (i-- -clutter ratio (20)

is plotted as a function of the ratio of the residue range and the unambiguous range
(r/ro) for the cases of surface clutter and volume clutter. Since the worst case actually
occurs when r is equal to the radar minimum range rm"m (since targets are not detectable
when r < rmn), these plots thus also-show the effect of radar minimum range. If the
radar minimum range were equal to ro, the increased clutter ratio would be at 0 dB.
When the radar minimum range reduces, this clutter ratio increases, and is approximately
a function of (r/r0 )L.

EXAMPLES

In the following examples the clutter spectrum density is assumed Gaussian, having
the form

G(f)= , (20)

where a is the standard deviation, with the correlation function being

jfirf(i-j)T -2172U2 (ij) 2T2f WOGfedl' = e- (21)

In the plots a is normalized with respect to PRF (which is the reciprocal of the required
interpulse time T for the equivalent range-unambiguous case) for convenience in making
comparisons.

8
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Fig. 1 - Increase in clutter level due to close-in clutter as the
residue range decreases, shown by plotting the clutter ratio,
given by Eq. (20), as a function of the range ratio r/ro. This
plot also shows the effect of radar minimum range rmin, if the
range ratio is interpreted as rmin/ro.
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Fig. 2 - Improvement factor of surface clutter of a
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Fig. 3 - Improvement factor of surface clutter of the three-
pulse canceler of Fig. 2 when N = 10 and the minimum-
range effect of Fig. la is taken into account

Figure 2 shows the improvement factor of a three-pulse canceler as a function of the
normalized a. The filter weights are assumed to be binomial, and surface clutter is
assumed. When the foldover index N = 1, a range-unambiguous case is represented. For
example, if it is required to design a radar to cover a range of 150 km for a range-
unambiguous case, the radar PRF must be 1 kHz. Assume that the clutter spectrum
density function has a standard deviation of 100 Hz. Then the normalized a is 0.1. Now
if a range-ambiguous MTI system is used, the radar PRF could become for example 2 KHz
(N = 2). The actual normalized a would be 0.05. However for the convenience of com-
parison the improvement factor of both cases is plotted at the same abscissa (at a = 0.1).
Figure 2 shows that the improvement factor of these two cases is respectively 12 dB and
14 dB. Thus, given the clutter spectral standard deviation and the required radar range,
curves in Fig. 2 represent the improvement factor that can be achieved either by use of

10
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Fig. 4 - Improvement factor of volume clutter of the
three-pulse canceler of Fig. 2
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Fig. 5 - Improvement factor of volume clutter of the three-
pulse canceler of Fig. 4 when N = 10 and the minimum-
range effect is taken into account

range-ambiguous, or range-unambiguous MTI systems. The figure shows that the improve-
ment obtained by use of the range-ambiguous system is not much greater than that of a
range-unambiguous system.

The curves in Fig. 2 are for the case in which the minimum-range effect of Fig. 1 is
ignored. In other words, only the part 1Y= 1 (Nli)L of the foldover-index effect is taken
into account. Therefore the actual improvement factor that can be achieved would be
the improvement factor (in dB) shown in Fig. 2 minus the dB value of clutter ratio due
to the minimum-range effect shown in Fig. 1. Figure 3 shows this improvement factor
that takes into account both the minimum-range and foldover effects for a three-pulse
canceler having a foldover index N = 10.
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Figure 4 shows the performance of the three-pulse canceler of Fig. 2 against volume
clutter. Since L = 2 for volume clutter and L = 3 for surface clutter, the factor
fi(N/i)L is smaller for volume clutter. Therefore the improvement factor of a range-
ambiguous MTI against volume clutter is better. Figure 5 shows the improvement of this
same three-pulse canceler when N = 10 and the minimum-range effect is taken into
account.

Figure 6 shows the improvement factor of a 16-point FFT doppler filter against sur-
face and volume clutter, without taking the minimum-range effect into account. The
improvement factor is examined at a filter corresponding to a doppler of 8/16 of the
PRF. The curve marked N = 1 represents the improvement factor of a range-unambigu-
ous system. The improvement factors of this curve can be divided into three regions.
For a normalized standard deviation (a/PRF) less than 0.02 the clutter is coitained in a
sidelobe null; hence it is better filtered and gives a high improvement factor. For values
of normalized a from 0.02 to 0.12 the clutter is confined in the sidelobe region. Since
the weights of the doppler filter have a Chevyshev distribution with a 30-dB sidelobe
design, the improvement factor is limited to this level of approximately 30 dB (33 dB
according to Fig. 6). In the region where the clutter normalized standard deviation is
greater than 0.12, part of the clutter gets into the main beam region, and the improve-
ment factor falls off rapidly. For a corresponding range-ambiguous system, say for N = 2,
in a range of o/PRF from 0 to 0.04 the improvement factor is good. However due to the
foldover clutter additional cancellation is required, and the net improvement factor is
actually worse than that of a range-unambiguous system. For values of a/PRF from 0.04
to 0.24 the clutter is in a sidelobe region, and the improvement factor stays fairly
constant, as is the case for a range-unambiguous system. However the net improvement
factor is worse due to the clutter foldover. The improvement factor for the range-
ambiguous system is slightly better for volume clutter (Fig. 6b) than for surface clutter
(Fig. 6a), since the foldover effect of the volume clutter is not as strong as it is for sur-
face clutter.

Figure 7 shows a case of a three-pulse canceler when pulses transmitted prior to the
first MTI pulse are either at a different frequency or do not exist. As pointed out
earlier, the performance of such a range-ambiguous system will be degraded. Figure 8
shows this degradation for a 16-point FFT doppler filter.

RANGE-AMBIGUITY RESOLUTION

One difficulty encountered with a range-ambiguous system is the determination of a
target's actual range. Since a target in the ranges of r, r + ro, r + 2ro, ..., r + (N - 1)ro
falls into the same range bin r, it is difficult to resolve this ambiguity. One way to
resolve it is to use several different PRFs. Assume that the number of range bins pro-
vided by these PRFs are rl, r2 , ... , rk, and assume that these numbers are prime to each
other. Then a target at a range greater than the unambiguous range will fall into different
range bins with the different PRFs. Therefore a total of

k

R =Jnrj
j= 1

13
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range bins can be resolved. This is a typical residue-number problem. To find the
natural number corresponding to a set of residue numbers al, a2, ..., ak, one may use
the formula [3]

R r
a1A1 - +... +akA 7 = S mod R,

ri r~~~k
(22)

14
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where

Ai - =1 mod rl ri

and where the modular relation is defined as

meaning

A = a mod b,

A = a + Qb,

where Q is an integer number.

As an example, if

r1 = 2, r2 = 3, r3 = 5, r4 7,

then

R= 2 X 3 X 5 X 7 = 210,

R
- = 105,
r,

R
- = 70,
r2

- = 42,
r3

R
- = 30.
r4

According to Eq. (23)

105A1 =lmod2orA.

70A2 = 1 mod 3 orA 2

42A3 = 1 mod 5 or A3

30A4 = 1 mod 7 or A4

= 1,

= 1,

= 3,

= 4.

By use of Eq. (22)

105al + 7°a2 + 126a3 + 240a4 = S mod 210

15

(23)

(24a)

(24b)



J. K. HSIAO

If a,, a2 , a3 , a4 equals 1, 2, 0, 4, then

S = 95.

This algorithm can be easily implemented on a computer.

The method applies only to the case of a single target in one sweep. If there are
more targets than one, the problem becomes much more complicated. For a doppler
filter this probably is not a serious problem, since, if two targets have different doppler
frequencies, they will fall into different doppler cells. This added information may be
adequate to resolve multiple-target ambiguities. Two targets which have identical doppler
frequencies are rare. For MTI, because no additional velocity resolution is available,
resolution of range ambiguities becomes difficult. For example, if two targets fall into
different range bins for each of n PRFs, there are 2n-1 possible range solutions. There is
no known method to resolve this ambiguity.

CONCLUDING REMARKS

In this report we have shown that when a range-ambiguous MTI (or doppler filter)
system has a shorter sampling time, the clutter correlation time is reduced and hence the
clutter output becomes smaller. This assumes that the clutter is uniformly distributed.
On the other hand, because of clutter foldover, the apparent clutter in each range bin is
increased. The net change in improvement factor is a function of these two effects. For
a doppler filter system, the improvement factor of a range-ambiguous system is worse
than that of a range-unambiguous system. Furthermore range-ambiguity resolution in an
MTI system for a multiple target situation becomes extremely difficult.
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